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Chaos and multiple periods are presented for the harmonically excited unsymmetrical
spring and damping system with clearance. This paper demonstrates the non-linear
behaviour of the motion through simulation and experiment. Intensive care and caution are
taken in the experiments to observe the chaos and the multiple periods properly. The focus
in this paper is mainly on the change of the bilinear spring sti!ness ratio as a prime factor by
which chaotic motions occur from quasi-periodic motion. Other investigations and e!ects
on motion are also discussed for the changing of the extent of clearance. The investigations
are based on frequency response curves. To understand the dynamics of the non-linearity of
this model, all possible data processing and displaying techniques are taken into account. To
observe the overall phenomena of this bilinear system, the resonance curves and the
bifurcation diagrams are taken thoroughly for a wide frequency region.
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1. INTRODUCTION

A system for the changing of the abrupt sti!ness and damping factor is de"ned as a
piecewise linear system in the non-linear dynamics. The piecewise linear system has
a practical interest in many mechanical systems such as supports with motion limiting
stops, mechanical systems having clearances or snubbers. A theoretical demonstration of
the piecewise linear system has been found in many papers [1}17] and, an experimental
demonstration has been found in a few papers [3, 17].

Clearance exists in many practical systems: clearance in coupling of rotor-coupling
system, clearance in bearing of shaft-bearing system, backlash in gear rattling, clutch-power
transmission system, etc. As clearance makes a system strongly non-linear, the system can
exhibit chaotic, super-harmonic and sub-harmonic responses. Non-periodic motion has
been established in the stability analysis literatures [2, 13, 14]. The damping factor has also
great e!ect in causing the non-periodic motions on the non-linear system [15]. The
clearance problem has been modelled as a single degree of freedom from early literatures [2,
4, 5, 7] to recent ones [3, 15, 17, 18]. Multi-degree-of-freedom model has been carried out
recently in some literatures [11, 12]. The focus in the above literatures is mostly
concentrated on symmetrical model for the clearance problem. Our previous study [3] has
demonstrated the frictional e!ect mainly on both of the symmetric and asymmetric models.

Chaos, a random-like non-periodic motion, has been a subject of interest for many years
[6, 7, 16}26]. There are di!erent routes to chaos. Period-doubling route to chaos is the most
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frequently observable route to chaos in the non-linear dynamics, which are depicted in some
literatures [6, 16, 25]. The Feigenbaum number is popular to distinguish this type of route
to chaos. The second type of route to chaos, intermittent route to chaos, is demonstrated in
literature [7]. The intermittency occurs due to the sudden changes of the size of chaotic
attractors, sudden appearances of the chaotic attractors (a possible route to chaos), and
sudden destructions of the chaotic attractors and their basin [21, 22]. Quasi-periodic route
to chaos is the third type of route to chaos [19].

An extensive discussion is available in literature [7] for the bilinear sti!ness system
free in the clearance, and also elastically connected in the clearance. The intermittent
route to chaos has been observed mostly in this literature. Experimentally, Wiercigroch
et al. [17] have shown through bifurcation diagram in some speci"c frequency regions
that symmetrical bilinear system with clearance can show the chaos. The conclusion of
this literature is that the chaotic motion occurs more in the symmetrical bilinear
system, as the ratio of the extent of clearance to the harmonic excitation amplitude is
decreased.

In our study, the model is considered as an unsymmetrical bilinear and a
one-degree-of-freedom model with clearance. The unsymmetrical bilinear system with
clearance has not been investigated properly through simulation and experiment. This
study thoroughly demonstrates the performance of the system for a wide range of frequency
regions instead of some speci"c frequency regions. The comparison and the cause of the
di!erences between simulations and experiments are also discussed through bifurcation
diagrams and all other data processing and displaying techniques such as FFT, phase plane
diagrams and PoincareH maps, etc.

The main purpose of this study is to investigate the chaotic phenomena and the multiple
periods of a periodically excited unsymmetrical bilinear spring and damping system by the
changing of the spring ratio and the clearance to the excitation amplitude ratio through
experiments and simulations. An attempt was made to adjust the experimental set-up with
the bilinear clearance model.

2. PHYSICAL AND CHARACTERISTIC MODEL

Figures 1(a) and 1(b) show the physical and the characteristic models of a bilinear spring
and damping system with clearance. Clearance is visible in many types of rotary machinery.
Coupling clearance is undertaken in this study. Coupling could be free or connected by
some elastic material in the clearance of a rotor-coupling system or a power
transmission-clutch system. A term, balance point is introduced to denote the starting point
of vibration of the system from rest. The unsymmetrical bilinear system is modelled in this
study where the position of the balance point is very near from the contact point and is held
on the spring k

�
as in Figure 1(b). The reasonability of the unsymmetrical concept is that the

bilinear system, especially having some preloaded conditions, could be hard to be
symmetric, while the coupling is free or connected by a very low sti!ness spring in the
clearance. The characteristic models of the system free in the clearance and connected by
spring in the clearance are shown in Figure 1(b). The extent of clearance is denoted by
(d

�
!d

�
). The vibration starts from the balance point with the spring sti!ness k

�
. When the

displacement of the vibration reaches within d
�
to d

�
, the sti!ness is changed to k

�
. Then,

again the sti!ness is changed to k
�
when the displacement of the vibration exceeds d

�
. The

solid line denotes the zero sti!ness slope of the spring k
�
, whereas the dotted lines denote

the higher sti!ness slope of the spring k
�
than that of the solid line.



Figure 1. (a) Physical model. (b) Spring characteristic model.
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3. ANALYTICAL MODEL

The three force conditions in unsymmetrical models with clearance (Figures 1(a) and 1(b))
are
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The excitation displacementX
�
being taken as E sin(�t), the equations of motion become
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The equations can be rewritten in the non-dimensional form as
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4. EXPERIMENTAL SET-UP

Figure 2 shows the experimental set-up. Harmonic excitation, E sin(�t), is imparted into
the system by the motor-crank device. The eddy current sensors measure the excitation
displacement (X

�
) and the displacement (X) of the mass m. The eddy current sensor (X

�
)

measures the clearance spring displacement. A "bre-optic sensor is shown as a timing signal
for poducing a pulse per cycle of the excitation frequency. A voice coil actuator (Figure 2) is
used as a coupling. A required force is applied into the system by the voice coil actuator for
"xing the position of the system at the balance point. Figure 3 demonstrates the data
processing and displaying techniques, and it is noted that no "lter is used in data processing
to avoid the change of phase of the signals. The parameters taken in the experiment are
m"2)1 kg, k

�
"15 N/mm,E"0)225 mmand the excitation frequency range"3)6&36 Hz.

5. NUMERICAL AND EXPERIMENTAL RESULTS

Figures 4}9 show the simulational and experimental results for the values of �"0, 0)15
and 0)25 while the value of the �"3 in all of the three cases. A set of parameters, �

�
"0)05,

�
�
"0)01 and �

�
"0)05 for the simulation, and �

�
"(0)04&0)17) for the experiment, is

kept constant in all of the three cases.
Figure 2. Experimental set-up.



Figure 3. Data processing and displaying techniques.
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Figure 4 shows the frequency response curves where the harmonic and the sub-harmonic
resonances are observable. Bifurcation diagram (Figure 5) of the frequency response
(Figure 4) demonstrates that the periodic, non-periodic and multiple periodic motion can
occur with the gradual increase of the excitation frequency. In both simulation and
experiment, it is shown that the non-periodic and the multiple periodic motions occur more
by the decreasing of the value of � from 0.25 to 0. Periodic order is denoted by Pn. Chaos
appears suddenly after P1 as an intermittent route to chaos. The periodic order is shown as
P1PChaosPP3PP5 for the spring ratio 0. The value of the spring ratio at �"0)15
could be called as a transient spring ratio among the considered spring ratios where the
non-periodic motion is approaching to diminish but other sub-harmonic resonances are
observable. Chaos appears suddenly, and the response exhibits chaotic motion for
a short-frequency region as a combination of the unstable periods of P2, P4, P6. Periodic
order is shown as P1PChaosPP2PP6PP3PP6PP3 (Figure 5(b�)). Strong
non-linearity is lagging at �"0)25; the bifurcation diagram shows only the P1 and P2
(Figures 5(c) and 5(c�)). The multiple periods also disappear signi"cantly, and the system
response mainly shows the harmonic and the one sub-harmonic resonance (Figures 4(c) and
4(c�)).

The results of Figures 4 and 5 are further investigated by the time response curve, FFT,
phase-plane diagram and PoincareH map. The observations of Figure 6 are as follows: FFT
does not indicate any strong peak, phase-plane diagram does not show any speci"c periods,
and PoincareH map shows the fractal structure of strange attractor like Figures 6(d) and 6(d�).
From these observations, it is clear that the motion from �"0)7 to 1)4 in simulation and
from �"0)81 to 1)26 in experiment is chaotic (Figure 5). Figure 7 shows period 5, where the
FFT shows strong peak at the 1/5 times frequency of the excitation frequency and the
phase-plane diagram also shows period 5 with a little mismatch between the experimental
result and the simulational result. Period 5 is seen only in the bilinear model free in the
clearance. Period 6 is shown in Figure 8 at �"0)15. Period 6 appears through a very



Figure 4. Frequency response curves at �"3. (a), (b) and (c) Simulational results at �"0, 0)15 and 0)25
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short-frequency region. PoincareH map clearly shows the 6 equilibrium points. FFT shows
an interesting result that the higher peak shows at the 1/3 times frequency of the excitation
frequency along with the lower peak at 1/6 times frequency of the excitation frequency.
Period 3 is shown in Figure 9 at �"1)85 in experiment and at �"2 ( f"0)3183) in
simulation.

Figures 10 and 11 show the frequency response curves and the bifurcation diagrams for
the values of �"1, 2 and 3, while the value of � is kept zero in all of the three cases and
other suitable parameters are taken as �

�
"0)1, �

�
"0)01, �

�
"0)05 for the simulation. As

the clearance ratio � is increased, more chaos and multiple periods occur, and the extent of



Figure 5. Bifurcation diagrams of Figure 4. (a), (b) and (c) Simulational results at �"0, 0)15 and 0)25
respectively. (a�), (b�) and (c�) experimental results at �"0, 0)15 and 0)25 respectively.
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frequency regions of the chaos and the multiple periods is also increased. From the time
response, phase plane and FFT analysis (Figures 12 and 13), it is shown that the motion
changes at the same frequency from periodic to chaotic or multiple periodic for the bigger
values of �.

6. DISCUSSION

Coupling mass and friction forces are not undertaken in the analytical model. The
attempt was made to design the experimental set-up as an analytical model. But it was not



Figure 6. Time response curve, FFT of time response, phase-plane diagram and PoincareH map. (a), (b), (c) and (d)
Simulational results at �"1)3 ( f"0)2069) of Figure 4(a). (a�), (b�), (c�) and (d�) experimental results at �"0)91
( f"0)145) of Figure 4(a�).

236 MD. Z. HOSSAIN
possible to avoid coupling mass completely, and a little friction force, especially friction
force parallel to spring k

�
, is worked against the motion in the experiments. Comparing the

system responses of experiment and simulation, these mismatches make some di!erences in
time response, phase plane and also in bifurcation analysis. In spite of these di!erences, the
quality of the motion almost remains the same and signi"cantly comparable to simulation
and experiment.



Figure 7. Time response curve, FFT of time response, phase-plane diagram and PoincareH map. (a), (b), (c) and (d)
Simulational results at �"2)45 ( f"0)3899) of Figure 4(a). (a�), (b�), (c�) and (d�) experimental results at �"2)3
( f"0)366) of Figure 4(a�).
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The occurring of chaos for the increasing values of � is understandable by the spring
characteristic observation (Figure 1(b)). It is assumed that the rightward direction in the
spring characteristic model is the positive direction of motion. The motion starts from the
balance point and, the position of the balance point is held on the spring k

�
. So, the motion

starts to travel normally from the spring k
�
to a very low sti!ness spring k

�
and then the

motion enters into the spring k
�
again for the second time in the positive direction of



Figure 8. Time response curve, FFT of time response, phase-plane diagram and PoincareH map. (a), (b), (c) and (d)
Simulational results at �"1)8 ( f"0)2864) of Figure 4(b). (a�), (b�), (c�) and (d�) experimental results at �"1)44
( f"0)23) of Figure 4(b�).
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motion. The motion returns back through the same path in the negative direction of
motion. The velocity changes rapidly at the contact points of the bilinear spring. After
suddenly falling down the amplitude at the harmonic resonance, a chaotic phenomenon as
an intermittent route to chaos is observed. The motion follows di!erent paths in this chaotic
region such as, sometimes the motion returns back from the spring k

�
without entering into

the main spring for the second time in the positive direction of motion, sometimes it reaches



Figure 9. Time response curve, FFT of time response, phase-plane diagram and PoincareH map. (a), (b), (c) and (d)
Simulational results at �"2 ( f"0)3183) of Figure 4(b). (a�), (b�), (c�) and (d�) experimental results at �"1)85
( f"0)295) of Figure 4(b�).
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the main spring for the second time in the positive direction of motion but does not return
back up to the balance point in the negative direction of motion, and also sometimes it
reaches up to the second contact point and returns back. This observation is also
understandable from Figures 6(a) and 6(a�). This motion becomes as periodic to be shown as
period 1 or 2, when the motion either travels nearly to the same displacement in the positive
and negative directions of motion or travels within the main spring only without entering
into the clearance spring.



Figure 10. Frequency response curves at �"0. (a), (b) and (c) Simulational results at �"1, 2 and 3 respectively.
(a�), (b�) and (c�) experimental results at �"1, 2 and 3 respectively.
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As the spring ratio is decreased with the same clearance ratio, more chaos
and multiple periods occur. The fact is that the velocity changes more at the
contact points of the spring characteristic model with the small value of the
spring ratio. The above discussion prompts one to make another conclusion, that
it is easy for the motion to travel to the same displacement in the positive
and negative directions of motion for the decreasing of the clearance ratio
with the same spring ratio, as the velocity cannot change very rapidly at the contact
points.



Figure 11. Bifurcation diagrams of Figure 10 at �"0. (a), (b) and (c) Simulational results at �"1, 2 and
3 respectively. (a�), (b�) and (c�) experimental results at �"1, 2 and 3 respectively.

CHAOS IN UNSYMMETRICAL SYSTEM WITH CLEARANCE 241
7. CONCLUSION

The observation of chaos and multiple periods in unsymmetrical bilinear models forms
the focus of one balance point model with di!erent values of the spring sti!ness ratios and
the clearance ratios.

Investigation of the di!erent values of the spring sti!ness ratios has revealed that the
chaos and the multiple periods are observed more prominently in the bilinear model free in
the clearance than that of the model connected by the spring in the clearance. Intermittent



Figure 12. Simulational results at �"0)8 ( f"0)1273) of Figure 10. (a), (b) and (c) Time response curve, FFT of
time response and phase-plane diagram, respectively, of Figure 10(a). (d), (e), and (f ) Time response curve,
FFT of time response and phase-plane diagram, respectively, of Figure 10(b). (g), (h) and (i) Time response curve,
FFT of time response and phase plane diagram, respectively, of Figure 10(c).
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bifurcation due to the crisis is mainly observed in this observation. Period-doubling
bifurcation occurred mainly to the smaller value of the spring sti!ness ratio and, further the
value of the spring ratio is decreased, the multiple period and the chaotic motions
disappeared.

Investigation of the di!erent values of the clearance ratios shows that decreasing of the
value of the clearance ratio could attenuate the chaos and the multiple periods.



Figure 13. Experimental results at �"0)85 ( f"0)136) of Figure 10. (a), (b) and (c) Time response curve, FFT of
time response and phase-plane diagram, respectively, of Figure 10(a�). (d), (e), and (f ) Time response curve, FFT of
time response and phase-plane diagram, respectively, of Figure 10(b�). (g), (h) and (i) Time response curve,
FFT of time response and phase plane diagram, respectively, of Figure 10(c�).
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APPENDIX A: NOMENCLATURE

DIMENSIONAL PARAMETERS

m mass of the system (kg)
d
�
!d

�
extent of clearance (mm)

X
�

harmonic excitation displacement (mm)
X displacement of mass m (mm)
X

�
displacement of clearance spring (mm)

k
��������

spring sti!ness (N/mm)
c
��������

damping coe$cient (N s/m)
E amplitude of harmonic excitation (mm)
� harmonic excitation speed (rad/s)
p
�������� �k

��������
/m

NON-DIMENSIONAL PARAMETERS

� p
�
t

�
�

d
�
/E

�
�

d
�
/E

� �/p
��

��������
c
��������

/mp
�� spring ratio (clearance spring sti!ness/main spring sti!ness)"k

�
/k

�� clearance ratio (clearance gap/amplitude of harmonic excitation)"(d
�
!d

�
)/2E)

f �/2�


	1. INTRODUCTION
	2. PHYSICAL AND CHARACTERISTIC MODEL
	Figure 1

	3. ANALYTICAL MODEL
	4. EXPERIMENTAL SET-UP
	5. NUMERICAL AND EXPERIMENTAL RESULTS
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	6. DISCUSSION
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

	7. CONCLUSION
	Figure 12
	Figure 13

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: NOMENCLATURE

